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ABSTRACT: In order for cognitive systems engineering (CSE) to deliver the benefits of
recent theoretical advances in actual systems being developed, the insights of CSE
must be transformed into pragmatic engineering practices. The CSE engineering
practices described in this article (using the applied cognitive systems engineering
methodology as an exemplar) are typical of just such an engineering adaptation of rev-
olutionary science and represent engineering practices that are dedicated to building
effective systems. CSE research insights can have a significant impact on their corre-
sponding systems engineering (SE) practices by expanding SE’s concept of a system
from just the technology components to a joint cognitive system (Hollnagel & Woods,
2005) and expanding the associated SE practices appropriately. This article uses the
Department of Defense system life cycle and the SE V-model (Forsberg & Mooz, 1992)
as SE process exemplars to illustrate how CSE engineering practices can be integrated
into the SE process. Specifically, we propose four key integration points where CSE can
contribute significantly to the SE process: concept refinement, software development,
testing, and postsystem development (i.e., operations support, training, and mainte-
nance). Our approach shows that the practice of CSE does not compete with SE but,
instead, augments current SE practices to ensure that the technology components are
engineered with the users’ cognitive needs in mind.

Introduction

Engineering makes a reality of the potential value of science by trans-
lating scientific knowledge into tools, resources, energy and labor to
bring them into the service of man. . . . To make contributions of this
kind the engineer requires the imagination to visualize the needs of
society and to appreciate what is possible as well as the technological
and broad social age understanding to bring his vision to reality.

—Sir Eric Ashby (1958, p. 72)
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BOTH THE SCIENTIFIC AND ENGINEERING PERSPECTIVES ARE ESSENTIAL TO THE DEVELOPMENT

of advanced, effective systems. It is significant that in its 25th year, the field of
cognitive systems engineering (CSE) is experiencing a renewed interest in explor-
ing its role within systems engineering. This interest shows most prominently in
the recent National Academy of Science panel report by Pew and Mavor (2007),
which focuses on the need for the engineering perspective to “catch up” to its sci-
entific counterpart. Hollnagel and Woods (1983) coined the term cognitive systems
engineering in a paper subtitled “New Wine in New Bottles” while Woods worked
in the research department of one of the largest engineering organizations in
the world. The first textbook related to the field, Rasmussen’s (1986) Information
Processing and Human-Machine Interaction, was authored by a control systems engi-
neer who was interested in building systems that were more capable of supporting
human capabilities.

However, since that time the scientific perspective’s advances have far out-
paced the application of CSE by the engineering community. That is, far more
studies have been conducted and papers written about CSE than there have been
systems built that have utilized CSE as the basis for their design. Although CSE
was born as an engineering necessity, it has been advanced primarily by a scien-
tific mindset (i.e., studying and describing the theory). The number of fielded sys-
tems containing a significant CSE contribution is extremely small. For the most
part, scientific advances have not been complemented by the rigorous engineering
adaptation of those scientific concepts into sound engineering practices. Our pur-
pose in this article is to discuss expansions to current systems engineering prac-
tices that allow the theoretical advances of CSE to be integrated into the systems
engineering (SE) development process. These changes involve both the development
of pragmatic CSE engineering practices as well as modification of SE practices cur-
rently in use.

The complementary relationship between engineers and their scientific brethren
is found in every other engineering discipline, and it also must be found in CSE so
that the research of cognitive psychologists and cognitive systems scientists can be
adapted for engineering practices used by cognitive systems engineers and also the
larger community of systems engineers. CSE has to complement the science with a
focus on SE. Although researchers do well focusing on one area of the larger CSE
process (such as knowledge elicitation or cognitive work analysis), the engineering
implementation of CSE must be a holistic process that folds the insights of all aspects
of CSE into the pragmatic engineering practices used by actual system developers.

The CSE concepts described in this article are the general principles that are
necessary for adapting science concepts and findings for engineering practice.
These concepts are instantiated in the practices described in a specific CSE
methodology, applied cognitive systems engineering (ACSE). It is left to the reader
to explore how these general CSE pragmatic engineering concepts are or are not
part of other CSE methodologies. ACSE is the fourth generation of a set of CSE
engineering practices that have evolved steadily since the near-catastrophe at Three
Mile Island. It is the recent evolutionary improvement over the applied cognitive
work analysis (ACWA) methodology, reflecting the larger SE focus of the methodology
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and the misnomer implied by the word analysis in ACWA. Over that time, ACSE
and its predecessors have resulted in more than 40 major systems (e.g., AWARE:
nuclear power plant alarm management system; TRANSCOM Regulating and
Command and Control Evacuation System [TRAC2ES]: regulation and evacuation
of casualties; Information Warfare Planning Capability: assessment synchroniza-
tion and evaluation; performance view: communications network monitoring)
under six corporate umbrellas.

Given the evolution of CSE over the past 25 years, how is it now going to pro-
duce the kinds of engineering practices that will make it part of the mainstream
SE community? The good news is that the SE community is amenable to much of
what CSE is prepared to provide. Looking behind the various SE concerns and
issues being discussed in the SE professional literature reveals the opportunity for
CSE and the implicit requests for CSE assistance as a member of the SE commu-
nity. This article is about making that connection between CSE and SE at the engi-
neering practices level.

Systems Engineering Background

SE has been defined simply as an interdisciplinary approach and a means to
enable the realization of successful systems (International Council on Systems
Engineering, 2004). A more complete definition describes SE as a robust approach
to the design, creation, and operation of systems that consist of the identification
and quantification of system goals and requirements, creation of alternative system
design concepts, performance of design trades, selection and implementation of the
best design, verification that the design is properly built and integrated, and postim-
plementation assessment of how well the system achieved its goals (Institute of
Electrical and Electronics Engineers [IEEE], 2000; National Aeronautics and Space
Administration, 1995).

From an SE perspective, a system can be thought of as a collection of multiple
technology elements and hardware subsystems that, in combination, produce a result
beyond anything the individual elements could accomplish in isolation. Within the
SE community, a system has been defined as 

a construct or collection of different elements that together produce
results not obtainable by the elements alone. The elements, or parts, can
include people, hardware, software, facilities, policies, and documents;
that is, all things required to produce systems-level results. The results
include system level qualities, properties, characteristics, functions,
behavior and performance. The value added by the system as a whole,
beyond that contributed independently by the parts, is primarily created
by the relationship among the parts; that is, how they are intercon-
nected. (Rechtin, 2000, p. 26)

SE is a top-down, comprehensive, iterative, and recursive problem-solving
process that is applied sequentially through all stages of development by integrated
multidisciplinary teams; it transforms needs and requirements into a set of system
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products and process descriptions so that the system can be built tested, fielded,
and supported. People are included as part of the definition of a system, but their
role in that system is generally poorly specified, and the focus of the effort is on
the technology components that can actually be “engineered.” It is critical for cog-
nitive systems engineers to be better integrated into these multidisciplinary sys-
tem development teams if they are to be successful in transforming the operator’s
cognitive needs into a set of system engineering products by providing this criti-
cally needed input to the system development process.

Successful integration of CSE into the SE development process involves finding
the proper scope for designating and understanding the systems being designed.
One of the most important ways CSE can have a significant impact on the SE
process is by expanding the very concept of a system. People are more than just
another system component. They bring a unique set of demands, capabilities, and
goals with respect to the system. Hollnagel and Woods (2005) argued that the
proper scope of a system is actually the joint cognitive system (JCS): the combina-
tion of human problem solver and the automation and/or technologies that must
act as coagents to achieve goals and objectives in a complex work domain.

In order for the designed system to achieve its goals, the human problem
solver (or problem solvers) must work with the technology as a coordinated team.
From the JCS perspective, the system is no longer simply the technology and
hardware subsystems but also the human decision-making subsystem acting in
concert with the technology and hardware to achieve the joint system’s goals.

The key assumption of the JCS approach as a foundation for SE is that the
operator and enabling technologies must be seen as a single, fully integrated object.
The JCS must be the fundamental unit of analysis in system design (McKenna,
Gualtieri, & Elm, 2006). The JCS is not a set of independent subsystems but con-
sists of the entire set of humans, technology, and automation systems operating
in conjunction. The potential power of a properly designed JCS can be seen from
research showing that a human-plus-technology/automation team working together
performs better than either working alone (Layton, Smith, & McCoy, 1994). Thus,
although the human practitioners and the technology are separated physically, in
a properly designed JCS they always should be coupled functionally. The people
are not just interacting with the technology but, rather, using it to perform some
function in order to accomplish some goal. Seen this way, the technology can be
understood as not merely a separate subsystem component that can have some
human interface bolted on after it is designed; rather, it specifies and constrains
how human intentions will be transformed into actions in the domain of interest.

Systems Engineering and the Acquisition Process

The SE process formed the basis for the structure of the Department of Defense
(DoD) system acquisition process. However, the large scale of DoD systems acqui-
sitions has created inertial forces, which have circled back on themselves and now
shape and control the SE process. Currently, they are almost inseparable, with key
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acquisition decisions and payments coupled to key SE milestones and outputs.
Therefore, to better understand how CSE can integrate into SE, it is useful to con-
sider how the SE process is captured within the acquisition framework. This is
used as a specific example of an SE methodology in order to more easily describe
the integration of CSE with SE. Although the example discussed in this paper is
specific (ACSE with DoD), the points being made are general. It is expected that
any mature CSE process should exhibit the same opportunities for integration
with any formalized SE process.

The fundamental phases of the DoD process are concept refinement, technology
development, system development and demonstration, production and deploy-
ment, and operations support. These five SE activities are formalized as part of the
DoD systems acquisition process (see Figure 1). At each stage of the DoD systems
acquisition process, milestones and performance reviews occur to ensure that the
SE process has been successful to that point.

Life-cycle integration is a continuous process that cannot be achieved by a
one-time application of SE principles. For some systems, the development process
(through initial operational capability [IOC]) can last 10 to 15 years (Defense
Science Board, 2007). Throughout this period, there are myriad decisions to be
made regarding the form the final system will take. In order for the SE process to
successfully build a JCS, it is important that CSE be involved for the entire devel-
opment process, not just as an afterthought at the end of a development process.
CSE cannot be thought of as a consultant service whose contribution can be real-
ized in a few meetings and a week of time.

Part of CSE’s limited impact on major systems is that traditionally, if CSE has
any role at all, it has been applied solely during the development of a user interface,
often after that interface has been implemented by the software developers. This
interface is typically “bolted on” after all the engineering decisions regarding the
underlying technology and hardware have been made. This is too late in the process
to have any meaningful impact, preventing true integration of the human and tech-
nology subsystems. Many of the large decisions regarding system architecture
(i.e., the design of the set of relations between the parts of a system) and function-
ality have been locked down, leaving very little “maneuver room” for the cognitive
systems engineer to have the needed impact. Systems integration is achieved only
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through the continuity of subsystem development—that is, concurrent considera-
tion of all SE needs during the development process, including the CSE needs.

This paper uses, in addition to the DoD system acquisition process, the V-model
(Forsberg & Mooz, 1992) to illustrate how CSE can be integrated into the SE
process (see Figure 2). Both illustrate the temporal sequence of events necessary for
systems development. However, the V-model contains a bit more detail within each
acquisition phase, and it emphasizes the coordination of testing and how testing at
various levels of abstraction corresponds to the level of system design.

Others (Pew & Mavor, 2007) have suggested using an incremental commit-
ment model (ICM; Boehm & Lane, 2007) for the integration of CSE with SE. The
simpler V-model is more convenient to illustrate the points of this paper. Once
this is understood, the reader is free to expand the discussion to the incremental
SE processes of the ICM method.

The V-model is a graphical representation of the SE life cycle. It is designed to
simplify the understanding of the complexity associated with developing systems
within a system validation framework. It is used to define a uniform procedure for
product development. The V-model reflects the simple fact that a system can be
validated only if it “runs” (Cockburn, 1994). Before it runs, it must be built and
debugged. Each piece is based on a design, which is based on requirements.

Time proceeds from left to right in the V-model. The left side of the V-model
represents the decomposition of requirements and creation of system specifica-
tions. The right side of the V-model represents the integration of parts and their
verification (Defense Acquisition University Press, 2001). In other words, the SE
team must gather requirements before they design, design before they build, build
before they test, and test before they validate the initial requirements.
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The remainder of this paper discusses the generic opportunity for CSE’s role
during each phase of the SE process. Further, the ACSE CSE methodology and its
connection to the DoD system phases and the SE V-model provide specific exam-
ples of the engineering practices to implement these opportunities. Only by inte-
grating CSE throughout the larger system development process can (a) these
systems be made truly effective at the intersection of agent, technology, and work;
and (b) the field of CSE grow through the SE community’s adoption of sound CSE
engineering practices.

Integration Point 1:CSE’s Role in Concept Refinement

Systems engineers, seeking to field an operational system, work from project
infancy to the installation and support of that system. The initiation of the devel-
opment of a new system requires that systems engineers become involved in the
process of developing the requirements for the system to determine exactly what
the system must do.

Nominally, the concept refinement process starts with customer inputs. The cus-
tomer is asked, “What capabilities do you need?” Inputs consist primarily of the cus-
tomer’s needs, objectives, and project constraints. This process is typically informal
and literally captures the subjective opinions of users (and pseudo-users). CSE offers
a powerful complement: supporting the collection of these customer inputs through
the use of its various knowledge elicitation techniques and subsequent analysis.

This raw knowledge elicitation is transformed through a cognitive work analy-
sis into a representation of the goals and demands of the work domain (Elm,
Potter, Gualtieri, Roth, & Easter, 2003; Rasmussen, 1986; Rasmussen, Pejtersen, &
Goodstein, 1994; Vicente, 1999; Woods & Hollnagel, 1987). Although this trans-
formation is routinely part of the CSE process, how to integrate it into the system
development process has been more problematic. The results of this analysis pro-
duce a new class of requirements, embodying the CSE principles necessary to
implement an effective JCS.

Brooks (1987) claimed the specification, design, and testing of the concept is
the most difficult challenge within software engineering—more difficult than the
actual code writing. Essentially, determining what a JCS is supposed to be has
been more difficult than determining how to construct the JCS. However, build-
ing code gets the most focus in SE education and training; little education goes
toward the requirements development process, despite its difficulty (Brackett,
1990). In fact, the challenge of developing effective requirements is reflected in
the many and varied techniques that the SE community uses to try to fill this void,
such as Jacobson use cases (Jacobson, 1992), Rapid Application Development
(RAD)/Joint Application Development (JAD; Andrews, 1991), and extreme pro-
gramming (Beck, 2000). CSE is ideally suited to be the key breakthrough in the
development of good system requirements because of its focus on overall system
goals and the associated cognitive work (including coordination) that needs to be
accomplished by the people using the system to achieve those goals.
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Requirements engineering seeks to elicit high-level goals, refine these goals,
and assign the responsibilities to various agents in order to complete the goals
(Feather, Fickas, van Lamsweerde, & Ponsard, 1998). Often, this requirements gen-
eration process is little more than recording what the customer requests. Although
the process is more complex than this, the customer, as end user, is seen as the
authority by which requirements must be developed. The designer asks the customer
what he or she wants in a system, and the customer provides this information.

Although this seems a straightforward and logical approach, it has its flaws.
Customers often know what they want their system to do at a very broad level but
find defining the concept itself is a very difficult process. A simple question-and-
answer approach (or questionnaire) does not adequately address the deeper issues
inherent in the domain, and it may fall short of generating the proper require-
ments because of the inability of users and questioners to communicate effectively
(Goguen & Linde, 1993). Additionally, asking the customers generally produces only
the requirements that the customers think they need (or can think of at those partic-
ular times), ignoring other valuable requirements (Ernst, Jamieson, & Mylopoulos,
2006). Furthermore, this process is made more difficult by the fact that even knowl-
edgeable and well-practiced experts can have great difficulty verbalizing their
procedural knowledge regarding their own expertise (Ericsson & Simon, 1993).
Beyond that, users have immense difficulty in describing an “envisioned world”
much beyond current practices and systems (Hollnagel & Woods, 2005).

Current SE requirements practitioners struggle to discover information needs
for the human decision-making agent portion of a system (Papasimeon & Heinze,
2000). Commonly, these attempts provide only lists of data that “shall be pre-
sented to the user.” It is not adequate to provide users with only a data list display
(Elm et al., 2003). Doing so adds cognitive work, forcing the user to process and
integrate data on the fly. At best, this processing is done correctly but adds time to
the decision-making process. At worst, the processing leads to a mistake attributa-
ble to an overburden of cognitive work placed on the user, possibly leading to a
grave accident (McKenna, Gualtieri, & Elm, 2007). CSE can provide critical
input, because the SE process demands requirements that are understandable,
unambiguous, comprehensive, complete, and concise and that incorporate the
human subsystem into the larger system (Turk, 2006).

CSE injects a different class of requirements into the SE process (Figure 3).
Specifically, CSE provides requirements that focus on the decisions the envisioned
system must support (in our terms, a JCS) and the coordination requirements nec-
essary for the interface between the human subsystem and all the other subsys-
tems. Traditional human-focused requirements address only what data need to be
on the graphical user interface provided to the operator.

These data availability requirements tend to be very generic, and they do not
provide sufficient guidance about frames of reference and information relationships
to support an effective representation design process. This makes it impossible for
the requirements process to drive the SE problem solvers to design novel, effective
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decision support features, resulting in the repetition of designs based on traditional
interface formats (e.g., maps, spreadsheets). CSE-based design requirements spec-
ify the relevant information relationships, appropriate frames of reference to high-
light those relationships, and, finally, the properties of perceptual representations
to portray that information. Both the traditional and CSE-based requirements have
similar goals, but a CSE focus leads to a requirements specification that provides
more design guidance based on understanding of the work domain and of the per-
ceptual and cognitive demands of the people in a JCS.

To provide a more detailed exploration of how CSE integrates with the SE
process, we will consider the ACSE methodology throughout the paper. ACSE
(Elm, Gualtieri, Potter, Tittle, & McKenna, 2008) is the fourth generation of a set
of engineering practices that have evolved directly out of the ACWA methodology
(Elm et al., 2003). The ACSE methodology addresses the analysis, design, and
evaluation of a JCS. ACSE has strong influences on the requirements generation
process, changing the way requirements are developed and written. Standard “the
system shall . . .” style requirements are insufficient to develop a truly effective JCS.
It is not adequate to develop general statements of the way a system is supposed
to behave and allow the software engineer to determine the best way to make the
behavior happen.

CSE approaches concept refinement in a completely different manner: It
begins with the concept development process as a cognitive analysis, which “sup-
port[s] the development of revolutionary systems unconstrained by previous solu-
tions” (Sanderson, Naikar, Lintern, & Goss, 1999, p. 319). Cognitive analyses are
powerful because they abstract away the organizational partitioning of the work
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domain to model the underlying goals, functional relationships, and cognitive
work. The cognitive work analysis phase of ACSE, shown as ACSE(A) in Figure 3,
uses a focused approach to generate the understanding of the work domain in
order to develop the proper system requirements for the JCS.

Whereas many of the standard knowledge elicitation approaches are used to
create the baseline domain knowledge, the information gathered from these tech-
niques is then combined with situated observation in the work domain to reveal
key abstract concepts. These abstractions, and why a user employs them in per-
forming the decision-making task, help to define the functional goals fundamental
to the work domain. These functional goals, and the relationships between them,
are captured within a functional abstraction network (FAN). This lays the founda-
tion for the information space from which the system design should be based. The
differences between an ACSE/ACWA FAN and a functional abstraction hierarchy
(FAH)/attribute abstraction hierarchy (AAH; Vicente, 1999) are attributable in
part to ACSE’s focus on being part of a larger SE process.

Once the network of functional goals of the domain is represented in the FAN,
the next step in the ACSE methodology involves overlaying cognitive work require-
ments (CWRs) on the functional model as a way of identifying the cognitive
demands, tasks, and decisions that arise in the domain and for which the operator
requires support. The system requirements that follow from these CWRs must
allow users to accomplish this cognitive work in the JCS. Identifying the func-
tional relationships in the work domain and their associated cognitive work leads
to sufficiently detailed requirements specifications to support the relevant opera-
tor decision making within the resulting system design. This application of CSE
results in an integrated set of requirements—with dependencies, shared func-
tions, and related cognitive work—that all influence one another.

The next step in ACSE is to identify the information that the decision-making
agent within the JCS needs to complete the specified cognitive work (see Elm et al.,
2008, for a more in-depth description of the ACSE analysis process). These informa-
tion relationship requirements specify key relationships among collected data that
must be preserved within the JCS, ultimately shaping the system concept. The sys-
tem concept is more than just the interface between the operator and the technol-
ogy; the key relationships specified in the CSE analysis should affect all aspects of
the system (e.g., sensors, business rules, and physical placement of components).

The requirements definition process ends the concept refinement phase. At
the end of this phase, CSE has provided a definition for the JCS and a hypothesis
about what is required to support effective decision making for the human opera-
tors in the JCS. Within ACSE, the analytic artifacts produced by the process
include a functional model of the work domain, a specification of the cognitive
work needing support, and the information sources required to conduct that cog-
nitive work. CSE plays a key role during the concept refinement phase, comple-
menting traditional SE requirements that excel at reliability, availability, and other
requirements with an entirely new class of requirements that makes the needs of
the user an explicit part of the SE process.
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Following the concept refinement phase is the technology development phase.
This phase is meant to reduce technology risk (i.e., by understanding the role that
technology plays in supporting various system functions) and determines the
appropriate set of technologies to be integrated into the final system. Although CSE
is not traditionally thought to have a large role during technology development, in
fact, the selection of embedded, enabling technologies dramatically changes the
nature of the “teaming” between the user and the technology. Adding technologies
adds cognitive work associated with understanding and controlling it. CSE insights
during the technology development phase can dramatically improve the final suc-
cess of the JCS influencing the selection and/or the role of the technologies within
the system architecture.

Integration Point 2: CSE’s Impact on Software Development

The emphasis during the system development and demonstration phase is to
ensure operational supportability (i.e., requirements that extend through a system’s
deployment and retirement). The goal is to develop a prototype of the system,
reduce integration risk between system components (including the human opera-
tor), ensure system productivity, and implement human-systems integration. At
this point, the integration of CSE into the SE process is vital. During this phase, the
system engineer defines the system architecture and the system elements down to
the configuration item level (i.e., the smallest unit of the system that will be changed
independently of other components and that is under the control of the configura-
tion management process), based on the technology selected during the technology
development phase. Also during this phase, system design requirements are allo-
cated down to the subsystem level and are refined as a result of developmental and
operational tests and iterative SE analyses.

Within system development and demonstration, systems engineers define the
system in terms of its physical components and software elements design synthesis
(i.e., the process by which concepts are developed based on the functional descrip-
tions that are capable of performing the required functions within the limits of the
performance parameters prescribed). The design synthesis produces both physical
and software architectures for the envisioned system. Systems engineers create the
architectures by revisiting the functional requirements to verify that the synthe-
sized system design can perform the required functions at required levels of per-
formance. This iterative process permits the reconsideration of how the system will
perform its mission, and this helps to optimize the system design.

From the CSE perspective, this design process needs to extend this design syn-
thesis (Figure 4) to consider the entire JCS. During this phase, CSE takes the func-
tional analyses that were done in the concept refinement phase and transforms
them into a decision-centered design that will support the work that the human
operator must perform. Thus, the CSE engineers “take control” of the design
aspects that directly relate to the user and affect the eventual success of the JCS. By
folding in this CSE-based process, the designer ensures that the operator is able
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to complete work in the domain with the system that he or she is given. CSE’s
unique perspective allows for the consideration of the interaction of the decision-
making humans, the available support technology, and the demands of the work
domain in order to develop a more robust and reliable JCS.

Incorporating a CSE consideration for the decision-making human is critical
for determining the interface between the human operator and the rest of the sys-
tem (including other human decision makers). The system interface (or presenta-
tion layer) is not simply a device to exchange information between the human and
technology; more important, it specifies how the work domain is conveyed to the
humans in a JCS and constrains their actions in the world (McKenna et al., 2006).
Accordingly, the interface design requirements for the system must capture the
cognitive demands of the JCS effectively.

Traditional approaches to requirements analysis in the software engineering
community often have treated the generation of these requirements as the specifi-
cation of a software application programming interface (a message format used by
an application program to communicate with the operating system or some other
control program), merely defining the relevant data structures and the mechanisms
for sharing those data across subsystems. As such, software engineers generally
take the lead on coding the requirements into the system and designing the inter-
face. However, leaving the design of a system to the software engineers can lead to
problems (Cooper, 1999) with the degree of support provided to the users.

First, software engineers design the interface based on how they think about
the problem, not how the actual end user thinks about the problem. In such cases,
the resulting system is unlikely to reflect the experience of actual users (Goguen &
Linde, 1993). Although the resulting design makes sense to the designer, users will
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knowledge elicitation, IOC � initial operational capability, FOC � final operating
capability, FRP � full rate production.



struggle to understand many of the concepts within the design. Second, when
designing the system, software engineers fall back and rely on standard techniques
for data portrayal, using nearly a one-size-fits-all design methodology. When code
can be reused, Cooper (1999) argued, software engineers will reuse it, and because
the resulting system preserves the stated requirements (i.e., assuming no CSE
involvement, a set of requirements exists stating that “the required data are avail-
able somewhere in the system”), the system will be called a success. In most cases,
this results in systems that are data-complete but do not consider how the repre-
sentation affects human performance within the system.

From the CSE perspective, for information to be useful to support human
understanding and decision making within the JCS, the designer must utilize
human perceptual and cognitive capabilities (Elm et al., 2008). ACSE’s representation
design requirements (RDRs), as representation requirements derived from the CWRs,
are objective specifications of the needed correspondence for the display, eliminat-
ing subjective and artistic arguments that may occur when the requirements under-
specify the design process (Gualtieri, Szymczak, & Elm, 2006). These RDRs are the
link between analysis and design, transforming knowledge elicited in the analysis
phase into operational requirements for the working interface design. This step has
proven to be the most difficult in the design of JCSs; it is where weak linkage exists
between analysis artifacts and design artifacts. The design requirements specifically
must link the display concept and the work that is being supported.

RDRs specify not only what is to be provided for the user but also how the sys-
tem should be presented to the user (McKenna et al., 2007). This is an important
difference, as it provides the system designer with clearer direction on the percep-
tual elements to appear in the completed design. When RDRs are properly speci-
fied, the designer has a more detailed and shareable definition of success. The set
of RDRs guides the designer into the interface’s final appearance and provides a
more principled basis for determining when a design provides sufficient support
to meet the requirements. This appears to be in contradiction with Brackett
(1990), who argued that giving the designer more freedom is the proper way to
design a system. In fact, there is no contradiction; a designer needs adequate free-
dom to explore novel solutions and at the same time enjoys the clarity of the guid-
ance from the RDRs to both specify and stimulate the need for invention and
creativity toward an effective JCS. Whereas design freedom can generate the
proper design (by inspiration, chance, or attrition), specifying the design with a
shareable artifact helps to ensure that all members of the SE development team
understand the goals of the intended JCS.

Although a CSE analysis process such as ACSE(A) specifies the information
relationships that must be portrayed within the interface, the cognitive systems
engineer is not completely constrained regarding the interface design: The designer
must determine the best way to present the required information to the user. When
developing design requirements, one must make decisions about what frames of
reference should be used to structure the presentation of the data, what events
should be displayed, and what contrasts should be made salient. The CWRs
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provide guidance on these decisions in order for the resulting system design to
support the cognitive work.

The cognitive systems engineer must make data-encoding decisions when
instantiating the RDRs as a presentation design. These decisions are influenced by
the research on human perception and its interaction with various presentation
techniques (Elm et al., 2008; Gualtieri et al., 2005). These designs form a kind of
“requirement” that CSE contributes to the SE process. Typically, neither software
engineers nor systems engineers have the necessary background in human cogni-
tive and perceptual capabilities to fully understand how the requirements, as
encoded in the interface, will affect the users’ ability to make sense of the world.
The cognitive systems engineer, as part of the multidisciplinary SE team, utilizing
the lessons learned from years of studies in human perception and cognition
when encoding requirements into an interface, can ensure that the abilities of the
human user are taken into account during the development phase.

Although the focus of CSE is often on design during the system development
phase, CSE also can affect software development beyond the representation within
the presentation layer. These design decisions deeply influence the logical system
architecture. In fact, CSE can influence the entire software development process,
which, in addition to the presentation layer, includes the business, data, and
input/output (I/O) layers (Figure 5).
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Figure 5. Applied cognitive systems engineering has a significant impact on every
software layer, not just the encoding in the presentation layer. It affects what data 
are collected in the input/output (I/O) layer, how they are stored in the database layer,
and the transformations that must occur in the business layer.



In classic SE practice, the business layer handles the exchange of information
between the data layer and the presentation layer. The business layer performs all
the transformations necessary to convert the available data into the form needed
by the presentation layer. In a traditional SE process, data are usually presented in
the same form in which they were stored: as data values. Users then are forced to
convert data on their own in order to make decisions. Rather than directly address
this mismatch, systems engineers typically have seen fit to add more to the busi-
ness layer, using it as an automated agent that was nominally charged with replac-
ing the human. Without CSE involvement, the workings of the business layer
were hidden from the user, who must trust that what had happened behind the
scenes were the proper actions to take and that the answer provided is correct and
yet was ultimately charged with preventing the automation from committing an
error (i.e., by manual override).

In not recognizing that system failures were attributable to poor design of the
presentation layer, systems engineers swung the pendulum too far in the design of
the business layer. Because users couldn’t always properly convert pure data into
the answer, the business layer was used to provide that answer, while giving no
data to the user. This is a major problem with automation: Most systems engineers
prefer to hide the details of the business layer from the users who are required to
monitor and work with the automation. This becomes problematic when some-
thing goes wrong and the user is given no indication of what went wrong with the
business layer, why it went wrong, or how to solve the problem.

From a CSE perspective, the proper business layer design is a middle ground
between the two dichotomous ends of the spectrum (either present only data or
fully automate the task). That middle ground is where powerful technologies are
engaged when they excel, but in a manner that is fully observable and directable
by the human (Hollnagel & Woods, 2005). To achieve this, cognitive systems
engineers should use the functional analysis developed during analysis as a
knowledge model (i.e., the FAN in ACSE) to inform the business layer how to
convert the collected data into the representational forms described in the RDRs.

The information relationship requirements (IRRs) identify the proper context for
the required data, turning it into information that the decision maker requires.
Making these conversions in the business layer, and presenting this information to
the user within the presentation layer, exempt the user from doing any data trans-
formations in the head, greatly reducing the likelihood of error.

Additionally, the knowledge model created from the cognitive analysis can be
used as the basis for any automation that is desired for the system (Bisantz et al.,
2003). The analysis is created independent of who, or what agent, is performing
the identified work. Its purpose is to identify the relevant work and the informa-
tion that is needed to complete this work. When the required work is suited for
automation, then automation should be built into the business layer.

However, adding automation also adds work for the human in the JCS to
complete. The human must monitor the automation, initiate it, control its modes,
and so forth, in order to ensure that it is running as expected. This requires that
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the presentation layer support the user in understanding the work that is being
done in the business layer (i.e., present the information necessary for decision
making), so that the user is able to jump in and complete the work at a moment’s
notice should the automation be stretched beyond its capabilities. The presentation
layer also must allow for the manipulation of the automated agent (i.e., provide
feedback to its processes) in the business layer, so that users can control what it is
doing rather than being controlled by it. With this CSE input, the business layer
becomes more powerful than simply extracting data in the database and present-
ing it in the presentation layer: It presents the right information to the user in the
right context at the right time.

Changing the way the business layer is developed affects how software engi-
neers must develop the data layer. The way the data are stored in the database
influences data access times in the business layer. The better laid out the architec-
ture, the faster the data calls and, thus, the faster the program will run. Designing
an effective data layer architecture, however, depends on having a good sense of
how the user will move through the information space (and, via business layer
transformations, the associated data space). Without this understanding, early
decisions about what constitutes an effective business layer is not possible.

The I/O layer is similarly affected by the CSE influence. The IRRs from the
CSE analysis, along with the associated transformation algorithms, lead the deter-
mination of what data must be acquired by the system. A give and take ensues
between the information needs of the user (as specified by the IRRs) and what is
technically possible in the I/O or business layers. IRRs become a requirement tar-
get to be met, in contrast to traditional SE processes, which approach the problem
as “these are the available data.”

The ACSE process identifies the data that are to be collected by the I/O layer in
the domain to support good decision making (albeit in the form of needed infor-
mation presentations for the user). ACSE identifies the information relationships
that decision makers will need to perform cognitive work within the domain.
These information needs are created independently of the current work practices
and focus on user needs. Accordingly, the analysis is able to identify those data
that are not currently part of the business practice and need to be collected. The
data needs are not even limited to data that can be collected currently. If some data
may be useful but currently no technology exists to do the collection, this may
spur on the creation of the technology, especially if the data required are extremely
valuable to the decision-making process.

Integration Point 3:CSE Insights for Testing

Providing design input is not the only way in which CSE contributes to the
system development and demonstration phase. For each application of the SE
process, the solution must be compared with the requirements. This part of the
process is called validation and verification. Each requirement at each level of devel-
opment must be validated and verified.
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Validation is the process by which systems engineers confirm that the require-
ments allow for the system to perform a necessary action. Verification is the
process by which systems engineers check the system to ensure that the require-
ments have been implemented. It is expected that this process will ensure both
that the correct system is built and that it is built correctly. With a completely vali-
dated system, it is assumed that the proper requirements are in place. However, as
stated earlier, from a CSE perspective the current requirements elicitation process
is unable to ensure that good requirements have been developed. Adding CSE-
based testing to verify decision support to the user expands traditional verification
to include its highest-level requirements as a JCS.

With ACSE, validating requirements becomes a much different process. The
cognitive systems engineer transforms the RDRs for the system into visual repre-
sentations, which are early prototypes of the final system. As such, they serve as
hypotheses about how the domain works (Hollnagel & Woods, 2005). Design
reviews of these representations are used as validations of the CSE requirements.
The designs are presented (and, to a lesser extent, exercised via storyboards, pro-
totypes, etc.) to end users as a test of the design hypotheses. If the design does not
sufficiently allow the user to accomplish the identified cognitive work, the
requirements must be revised. If the JCS design is effective, then the system can be
built, and verification can ensure that the system is built properly. This CSE vali-
dation has a twofold effect (see Figure 6). It makes sure that the requirements are
sufficient to achieve system goals and that the requirements have been instantiated
in a way that takes advantage of the unique capabilities of all elements of the JCS,
leading to effective overall system performance.
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Figure 6. Extending the systems engineering process with verification of CSE-based
requirements with edge-centered testing. ACSE � applied cognitive systems engineering,
KE � knowledge elicitation, IOC � initial operational capability, FOC � final operating
capability, FRP � full rate production.



Testing from a CSE perspective complements the current systems evaluation
methods. Traditional SE tests consist of evaluating the usability of the system,
evaluating the human performance within the system, and validating the software
that was written. These tests must be complemented with a CSE-based evaluation
of the net decision-making ability of the JCS in realistic, “decision-difficult” situa-
tions. Just as CSE is used in the creation of a system design, it also must be the
foundation on which JCS designs are tested to ensure that cognitive work is being
supported. The testing component of ACSE, ACSE(T), uses an approach called
edge-centered testing (ECT). This CSE-based evaluation was developed to test the
effectiveness of a JCS in any challenging work domain by reusing the CSE analysis
as the basis to evaluate the decision-making effectiveness across identified deci-
sion-difficult regions in the JCS structure (Potter, Elm, & Tittle, 2007; Rousseau,
Easter, Elm, & Potter, 2005).

ECT involves the explicit design and analysis of tests based on the key decision-
making demands within the scope of the system. The result is an explicit test
design describing the cognitive problem under test, the hypothesized “edge” or
latent potential weaknesses in the JCS, and the events that need to be included in
the scenario. In ECT, test scenarios are developed to specify a progressive evolu-
tion of events that would be expected to stress the defined edge. ECT has been
remarkably effective at identifying JCS design weaknesses that were not evident in
the results of more traditional SE-style testing. This decision-centered approach to
testing has proven effective in discovering fundamentally new ways for evaluating
the net decision-making effectiveness of the joint human-technology decision-
making team. Ultimately, ECT is about evaluating the resilience of the JCS.

ECT becomes a mechanism for ensuring the JCS is designed in a manner that
allows an operator to routinely make good decisions. Based on the analysis devel-
oped in ACSE, it pinpoints difficult decision areas and forces users to make these
decisions under cognitive pressure. A well-designed display allows users to make
good decisions even in novel, adverse, undersigned situations. This is different
from human performance testing, which can state nothing about any of the partic-
ular aspects of the display or the JCS, only that the human did better in one system
than in another. ECT specifically tests one aspect of the system, allowing conclu-
sions to be drawn about how well the tested aspect supports the decision-making
abilities of the JCS. Furthermore, by testing to identify the decision-making support
provided by the JCS, the cognitive systems engineer can ensure that the functional
analysis was executed properly.

By testing against the CSE-based requirements, one can attribute the success
or failure of the visualization in supporting decision making to how closely the
cognitive systems engineer approximated the domain in an analysis and how well
the analysis artifacts were encoded into a display. If the overall system excels dur-
ing the ECT, it will ensure a much more robust decision-making team and thus be
better able to deal with the complex, unpredictable nature of the real world. ECT
serves as an appropriate means to stress the components of the JCS to see if they
will fail under pressure and verify and validate the integrated system against the
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specified operational requirements within the required operational environment.
ECT provides the necessary CSE complement to traditional SE testing to deliver test
coverage of both the operation of the system and the satisfaction of its role as a JCS
performing cognitive work in situ.

Integration Point 4:CSE Insights Beyond System Development

CSE is able to play a large role in the development of the system, generating
the novel CSE-based requirements, achieving an effective representational design
for the users, verifying and validating the requirements, and allowing decision-
centered testing of the CSE requirements once the system is built. But it also can
have a role that is larger than just the designed system. CSE provides a holistic
design point of view that extends to such areas as role allocation, crew structures,
training, procedure development, and operational business practices.

The purpose of the production and deployment phase is to achieve operational
capability that satisfies mission needs. As the system becomes operational and is
placed in the hands of users for actual use, CSE techniques such as in situ obser-
vation present a unique opportunity to discover issues not evident to the non-
CSE-trained eye. Once detected, the traceability of the CSE-based requirements
provides great benefits during the production and deployment phase, enabling
the redesign of components that do not fully support the decision-making needs
of the operators.

It is during this phase that the system attains its initial operational capability. It
is also at this phase that training issues come to the forefront. Training has become
a bit of a cure-all in the SE process, to the point that it can be viewed as an indica-
tor of a latent system design issue for a CSE-trained observer. Systems engineers
attempt to correct JCS performance issues by providing additional training, proce-
dures, policies, and so forth. Whenever an accident occurs, one of the first correc-
tive measures to make sure a similar accident does not happen again is to add
incident-specific training to the training program. Correcting the JCS design con-
stitutes a more enduring solution than requiring the user to recall additional train-
ing during a stressful situation.

The final phase of the system life cycle is the operations and support phase.
The objective of this phase is to sustain the system over its total deployed life
cycle. The role of CSE during this phase is to continue to observe and test to
detect JCS issues and incrementally execute the CSE methodology to facilitate
improvements to the design of the JCS.

Conclusion

SE has continually enhanced its processes without looking to CSE for addi-
tional insights. (This is attributable, at least in part, to the lack of pragmatic CSE
practices suitable for adoption by the SE processes.) Successful systems design is
possible only when the human is considered an integral component of the overall
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system. The question for those in the CSE community is, Where should we influ-
ence the SE process?

The short answer is everywhere. However, there are key periods in the SE process
when CSE input is particularly valuable. Based on the points made earlier in this
paper, a prescriptive effort profile is proposed (see Figure 7).

By augmenting traditional SE teams and processes with the indicated CSE
contributions, one adds a JCS perspective to the SE process, resulting in more
supportive system designs. This improved support evidences itself in more robust
decision-making performance under stressful conditions, as indicated by reduced
error rates and, more important, faster error detection and recovery, particularly in
novel, unanticipated situations. ACSE, as a specific methodology of CSE, is a struc-
tured methodology that specifies the structure of the analysis, the way to trans-
form this analysis into a design, and a means for testing the resulting system.

CSE integrates naturally in the initial stage of the SE processes (i.e., concept
refinement), when efforts focus on developing a vision for the system under devel-
opment in the form of concept documents and the various levels of requirements.
By explicitly exposing the cognitive work to be supported, CSE contributes a criti-
cal perspective on “what the right system is,” which has remained a vexing problem
for the SE community. By incorporating this decision-centered perspective into an
already robust requirements management portion of the SE process, one combines
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Figure 7. Relative level of cognitive systems engineering (CSE) effort in the Department
of Defense system acquisition process required for effective joint cognitive system (JCS)
development. IOC � initial operational capability, FOC � final operating capability,
FRP � full rate production.



the best of both worlds, finally allowing not only “building the system right”
(process focus) but also “building the right system” (effectiveness focus).

The addition of CSE at the concept development phase is the least contentious
point of integration because the SE community continues to look for new tech-
niques that address fundamental user issues (e.g., Rapid Application Development
(RAD)/Joint Application Development (JAD), use case, Jacobson extreme pro-
gramming). The highly visible CSE-based graphical user interface representational
concepts appeal to advanced, “early adopter” users. CSE provides a principle-driven
approach to the development of operational concepts (e.g., coordination of directed-
attention subsystems with both functional and physical display systems) that contain
a level of design that appeals to systems engineers.

During the technology development phase, when high-level or detailed systems
requirements are generated, the SE community has been less accepting of CSE
input. Traditional SE processes treat requirements as fundamental “shall”/“will”
language statements that are expanded or decomposed during the initial phases of
a program into more detailed statements. CSE-developed requirements (as instan-
tiated by the particular requirements developed by the ACSE methodology) actu-
ally contain representational requirements and performance requirements that are
normally thought of as “design” artifacts. For example, an ACSE-generated soft-
ware requirement specification (SRS) is expanded beyond the standard IEEE SRS
to explicitly include designed displays, needed data transformations, and look
and feel descriptions. The proven advantages to the process of considering these
design insights as system requirements have included (a) directly affecting early
system architecture and technology design decisions while they are still malleable
and (b) improving engineering work budget/schedule development estimates
because specific capability requirements for presentation and interaction replace
the vague “the system shall display all necessary data” type requirements.

During the system development and deployment phases, the CSE role is fun-
damentally one of supporting the handoff to engineers constructing the system.
Our experience with ACSE has proven that even our best CSE design specification
and its companions, the expanded system and software requirement specifications
(SyRS and SRS), never fully communicate all the nuances of the design to the devel-
opers, and face-to-face interaction is essential. This is because the CSE derived
specifications are focused on the human component of the system and lack some of
the technical detail that is typically found in an SyRS and SRS. Further, engineering
constraints, budget and schedule pressures, and so forth require a very closely cou-
pled, highly iterative cycle between the cognitive systems engineer and the develop-
ers in order to negotiate design and implementation compromises and alternatives.
Ultimately, the idealized initial design has to be resolved against an affordable,
practical implementation as an operational system. That resolution requires both a
cognitive systems engineer and a developer as part of that negotiation.

As the system development phase produces operational system components,
CSE reengages in the SE process. As system components complete unit and system
integration testing and are verified against the traditional SE requirements, they
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provide the operational capability to allow a novel CSE-based form of system test-
ing. Just as the initial phases emphasized the decision-centered analysis of the larger
JCS (i.e., including the human within the scope of system analysis), CSE-based
testing explicitly tests the combined performance of the user (or users) and the
developed technology system as an integrated JCS. It is our experience with CSE-
based ECT that it can detect latent decision support brittleness, even after success-
ful system testing and even extensive time in deployed operational use. These ECT
tests can detect this unique class of decision support weakness, which traditional
system testing overlooks, thus eliminating these flaws before they result in an oper-
ational failure or disaster.

When a human user is involved in the operation of a system, as is the case in any
JCS, the cognitive and perceptual capabilities of that user must be taken into consid-
eration. To this extent, CSE does not compete with SE but, rather, augments and
improves the SE process by ensuring that the users’ cognitive needs are satisfied.
Integrating these CSE principles throughout the SE process provides the necessary
approach for developing truly user-centered systems, moving beyond merely user
acceptance to a whole new generation of resilient, supportive decision support tech-
nologies working seamlessly with the user to form a joint cognitive system.
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